
Second International Conference on Organic Food Quality and Health Research June 5-7, 2013 Warzaw, Poland

Researching links between sustainable and healthy organic systems

Niels Halberg International Centre for Research in Organic Food Systems

Sustainability in agriculture means achieving higher yields from less land with less water and energy...

We make progress in sustainability through innovations at all levels!

Eco-efficiency analysis in apple growing – **Organic vs. Conventional?**

Which apple is more sustainable? 0,0 High ecoefficiency Environmental Impact Organic 8:0 apple growing Germany, 2008

Costs

BASE

Low eco-

efficiency

Source: BASF SE, REWE Group

2.0

2.0

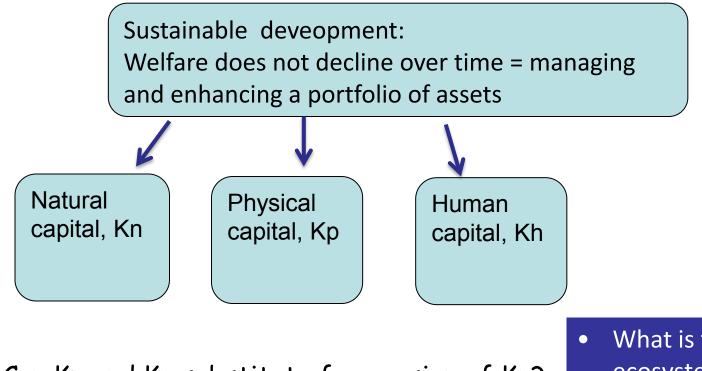
No surprise: cost of organic is higher

- Surprise: conventional apple has a slightly better ecological profile
- Organic causes less waste water and consumers less energy form fertilizer and pesticide production
 - But overall energy consumption, CO2 emission and land use is higher
 - The drivers are
 - \rightarrow Higher use of machinery (+70%)
 - \rightarrow Lower yield (-30%)

 \rightarrow Sustainability can be quantified by a comprehensive eco-efficiency analysis

Conventional

apple growing Germany, 2008


0.0

FAO/OECD Expert Meeting: IMPROVING FOOD SYSTEMS FOR SUSTAINABLE DIETS IN A GREEN ECONOMY. -September 2011

- FAO defines sustainable diets as
 - "those diets with low environmental impacts
 - that contribute to food and nutrition security and to healthy lives
 - for present and future generations.
- Sustainable diets are
- protective and respectful of biodiversity and ecosystems,
- culturally acceptable, accessible, economically fair and affordable,
- nutritionally adequate, safe and healthy,
- while optimizing natural and human resources" (FAO, 2010c).

Sustainability as maintaining and enhancing critical capital

Can Kp and Kn substitute for erosion of Kn?

Weak S: Yes, All Kn are non-essential Strong S: No, Some Kn are essential

Barbier & Marcandia, 2013: A new Blueprint for a Green Economy

- What is the critical capital for ecosystem services?
- Which capital assets can resp. cannot be substituted by other types of capital?

The classical 3 dominant visions of agricultural sustainability

- Food sufficiency
 - Agriculture as instrument for feeding people
- Stewardship
 - Ecological balance and bio physical limits
- Community
 - Agrees with stewardship but also focus on:
 - Vital, coherent rural cultures

G. Douglass, 1984

The meaning of sustainability: Assessment with a long term perspective

Thompson, 1995, after Douglass, 1984

• Resource

sufficiency (food sufficiency):

 Functional integrity (Stewardship & Community):

What may Organic Farming offer in relation to goals for sustainability?

- Efficient food production
- Foreseeable use of resources,
- Fulfilment of present and future needs: Capacity to produce
- Substitutability among resources
- Nature is robust a resource for humans
- Availability and regeneration of critical renewable resource base
- Resilience and avoidance of irreversible changes of complex agro-ecological and social systems
- Build institutions to support moral obligations
- Nature is "vulnerable" we are an integrated part
- Systemic approach, link to health

The four basic principles of organic agriculture

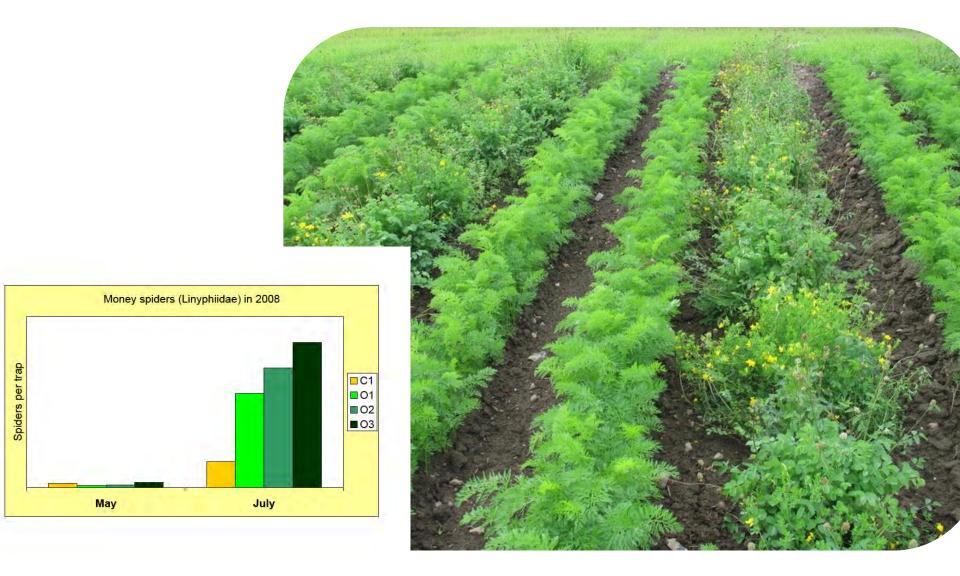
Endorsed by IFOAM, September 2005

	Health		Ecology		Fairness	Care
Principle	¹⁾ Agricultu sustain a enhance soil, plar	ure and health of at anim stainabi	Agriculture base living ecological systems lity concep	ed on t" apt	Relationship ply to each common environment and life opportunities	and management in light of future generations and environment
Keyword and concepts	resilience, regeneration		Recycling, efficient resource ecological balan genetic and agricultural dive habitats	ice,	Ecologically just use of natural resources and environment	Technology assessment, and risk aversion, acknowledge of limited understanding of ecosystems,
R&D-strate	PRINCIPLES # ORGANIC AGRI Principle of HEALTH Organic Agriculture should sustain and enhance the health of soil, plant, animal, human and planet as one and indivisible.	CULTURE Principle of ECOLOGY Organic Agriculture should be based on living ecological systems and cyc work with them, emulate them and help sustain them.	and a first on a first of the state of the s	Principle of CARE Organic Agriculture shou in a precautionary and re manner to protect the he well-being of current and generations and the envi	sponsible alth and future	respect for practical experience and indigenous knowledge

OA is good for biodiversity and biodiversity is good for OA (...?!)

Organic farmers use more *Agro-ecological methods*:

- Mixed crop rotations, intercropping, .
- Grasslands and green manure,
- Habitats and non-farmed areas
- Non-chemical pest management


Promoting *functional diversity* means enhancing and benefitting from *Ecological service functions*:

Pollination

- Pest and disease prevention
- Biodiversity preservation,
- Soil quality
- Resilience
- In situ conservation of genes

Growing carrots in rows between grass-legume mixtures for enhanced pest control and nutrient recycling in Danish horticulture crop rotation experiment "Vegqure", <u>ww.vegqure.elr.dk/uk</u> (Source: ICROFS)

Soil degradation and food security

Soil as a provisioning ecosystem service

- Soil degradation
 - Erosion
 - Compaction
 - Crusting and salinization
 - Nutrient mining
 - Loss of soil organic matter

- Food security
 - Yield reduction
 - Efficiency of input use reduced
 - Micro nutrient deficiency

Need for paradigm shift in land husbandry and Principles and practices for soil management

R. Lal, Food Security journal, 2009

Solutions for soil and food quality improvements

- Improve soil structure and quality
- Adoption of diversified cropping systems,
- Agro-forestry and mixed farming
- No-till agriculture
- On-farm experimentation and adaptation
- Adoption of diversified cropping systems, indigenous foods, GMO's high in nutrients

- Mulching and recycling organic residues
- Inoculating soils for improved Biological Nitrogen Fixation
- Microbial processes to increase P-uptake
- Water conservation and water use efficiency

R. Lal, 2009; Okalebo et al., 2006

With adoption of proven management options, global soil resources are adequate to meet food and nutritional needs of the present and future population

Organic Agriculture and soil quality

Results from different long term experiments:

- The organically treated soils were
 - physically more stable,
 - contained smaller amounts of soluble nutrients and
 - biologically more active than conventional (DOK trials, Mäder et al., 2002)
- Under organic farming the soil organic matter
 - captures and retains more water in the crop root zone

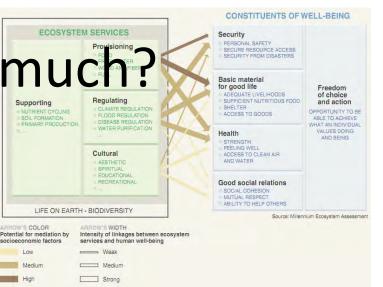
Soils as "regulating ecosystem services"

• Water capture in organic fields can be 100% higher than in conventional fields during torrential rains (Rodale Institute, 2008)

Carbon sequestration in long term experiments

Field trial	Components compared	Carbon gains (+) or losses (-) kg ha'i yr'	Relative yields of the respec- tive crop rota- tions
DOK Experiment, CH	Organic, FYM composted	42	83 %
(Mäder, et al., 2002;	Organic, FYM fresh	-123	84 %
Fließbach, et al. 2007) Running since 1977	IP, FYM fresh, mineral fertilizer	-84	100 %
Running since 1977	IP, mineral fertilizer	-207	99 %
SADP, USA	Organic, reduced till	+ 819 to + 1738	83 %
(Teasdale, et al., 2007) Running 1994 to 2002	Conventional no till	0	100 %
Rodale FST, USA,	Organic, FYM	1 218	97 %
(Hepperly, et al., 2006;	Organic, legume based	857	92 %
Pimentel, et al., 2005) Running since 1981	Conventional	217	100 %
Frick Reduced Tillage	Organic, ploughing	0	100 %
Experiment, CH (Berner, et al., 2008) Running since 2002	Organic, reduced tillage	879	112 %
Scheyern Experimental	Organic stom C	ervices"	57 %
(Soils as "regul	Organic ating ecosystem s	-120	100 %
Running since 1990 Niggli et al., 2009, FAO brochure			

Carbon sequestration in long term experiments


Field trial	Components compared	Carbon gains (+) or losses (–) kg ha'i yr'	Relative yields of the respec- tive crop rota- tions	
DOK Experiment, CH	Organic, FYM composted	42	83 %	
(Mäder, et al., 2002;	Organic, FYM fresh	-123	84 %	
Fließbach, et al. 2007) Running since 1977	IP, FYM fresh, mineral fertilizer	-84	100 %	
	IP, mineral fertilizer	-207	99 %	
SADP, USA	Organic, reduced till	+ 819 to + 1738	83 %	
(Teasdale, et al., 2007)	Conventional no till	0	100 %	
Rodale FST, Average	e difference betwee	en the best of	organic <mark>7 %</mark>	
(Hepperly, e and the	conventional treatments: 590 kg 29			
Pimentel, et Running sind Carbon ((2.2 t CO_2) per hectare and year.			
Frick Reduc Experiment, Co			<u>0 %</u>	
(Berner, et al., 2008)	Organic, reduced tillage	879	112 %	
Running since 2002	~ .			
Scheyern Experimental	Organic	180	57 %	
Farm, D				
(Rühling, et al. 2005),	Conventional	-120	100 %	
Running since 1990	Niggli et al.,	, 2009, FAO broc	chure	

Do we simplify ES too much?

Richard B. Norgaard (*Ecol. Econ. 2010*): *Ecosystem services:*

From Eye-opening metaphor

to complexity blinder

• Stock and flow models, remuneration of simple ES

Vs.

Accepting complexity, limitations to understanding of ecosystems

Is there a specific role for organic agriculture in the second approach? Or, is the focus on functional biodiversity in OA part of first approach?

Challenges for organic farming in light of the globalisation process

•Global procurement systems and Increased supermarket sales •Long distance transport (food miles, energy use), •Harmonisation and supply-on-demand favours •Large-scale production and trade •specialisation •Increased global competition means •pressure on organic principles and •commodification of common goods •Transperancy, trust, nearness...? •Local ownership and control of certification •Local embedment of Organic principles •Fair trade, partition of price premium

(Hall & Mogyorody, 2001; Woodward et al., 2002; Rundgren, 2003; Schwartz, 2002; Milestad & Darnhofer, 2003; Raynolds, 2004; Alrøe et al, 2006)

IFOAM 2011 GENERAL ASSEMBLY MOTION 57

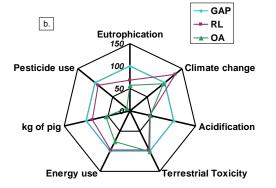
IFOAM shall position Organic Agriculture better in its own and the public perception as a holistic, sustainable farming system that is committed to further develop its practices to meet traditional and new challenges. To

ORGANIC MOVEMENT LAUNCHES A NEW SUSTAINABILITY INITIATIVE:

THE SUSTAINABLE ORGANIC AGRICULTURE ACTION NETWORK (SOAAN)

The Sustainable Organic Agriculture Action Network (SOAAN) exists to develop activities that positions organic agriculture and its related supply chains as a holistic, sustainable approach to agricultural production for all of human society. Working together as an alliance of

The relation between principles for organic agriculture, sustainability perspectives and indicators for benchmarking of organic farms


	Health	Ecology	Fairness	Care
Sustainabi lity concept	Functional integrity	<i>Resource sufficiency⁵⁾</i> Functional integrity	Functional integrity	Functional integrity
Practice based indicators	Soil fertility building;	N cycling on farm Production and use of	Good working conditions Recruitment	Participatory innovation and technology risk
(examples)	Diversification of	renewable energy		assessment
	crop rotation and intercropping	Reduction of GHG emissions	Animal housing and access to outdoor areas.	(biotechno-logies, molecular -omics and nano-
	Functional diversity	P recycling		technologies)
	Avoid soil compaction	Use of traditional breeds and diverse varieties.		
	Livestock health management	Maintenance of biotopes and permanent grassland		

	Health	Ecology	Fairness	Care
Sustainabi lity concept	Functional integrity	<i>Resource sufficiency⁵⁾</i> Functional integrity	<i>Resource</i> <i>sufficiency</i> Functional integrity	Functional integrity
Results based indicators	Animal health and welfare indicators	% imported manure, N surplus, kg ha-1	(see ecology) Global warming	New technologies implemented based on careful risk and
			impact	benefit
(examples)	Soil quality indicators - changes in	Energy use (MJ kg product ⁻¹)	(g CO ₂ -eq kg product ⁻¹)	assessments Technologies avoided from a risk
	soil organic matter - biological soil	% renewable energy use	Ammonia emission	aversion principle
	indicators	P Surplus, kg ha-1	Accidents to farm workers	
	% area treated with pesticides	% non-cultivated habitats of total farm	years ⁻¹	
	(Cu, pyretrum etc.)	area.	Social conditions	

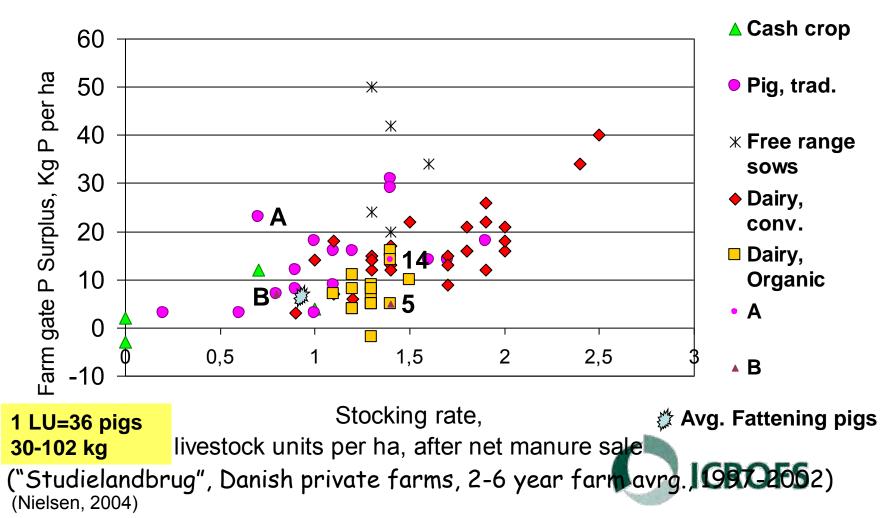
Indicators should:

- Describe relevant aspects of a food or farming systems,
- Be meaningful to the farmer and to other parties,
- Be scientifically valid and reproducible,
- Be possible to register and calculate by farmers or local advisors at reasonable costs,
- Be sensitive to changed management practice and be able to show changes over time,
- Be predictable and suitable for strategic (multi-objective) decision making.

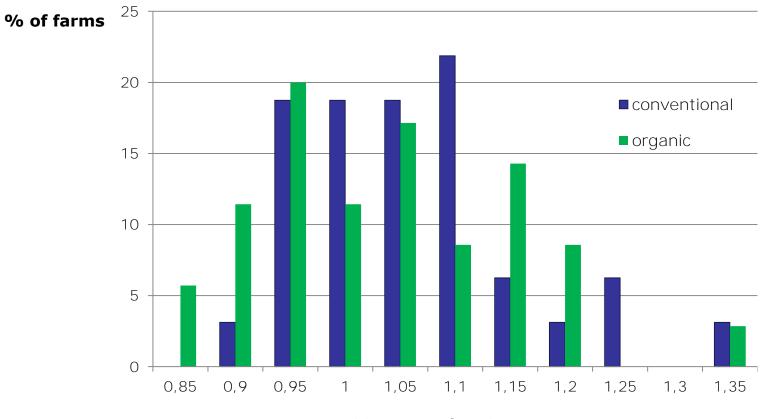
Types of Agri-environmental indicators

-linking farmer practices to environmental impacts

- 1. Farmers practise
- 2. Resource & Input use
- 3. Input-output account


- 4. Emission estimates
- 5. Environmental Impact, (aggregation over food chain in categories)

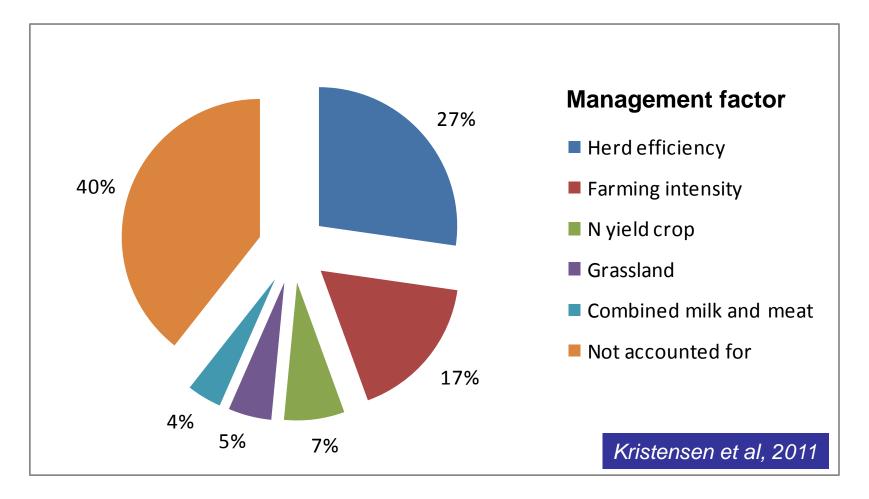
- Fertiliser plan made?, harvest interval respected?
- 2. Amounts of Feed, Fertiliser, Energy, Pesticides,
- Nutrient surplus per ha, Fossil energy per kg, Feed efficiency
- 4. Nitrate loss, Exo-tox (pesticides)
- Acidification, Global Warming Potential, per kg product



Reference values for benchmarking:

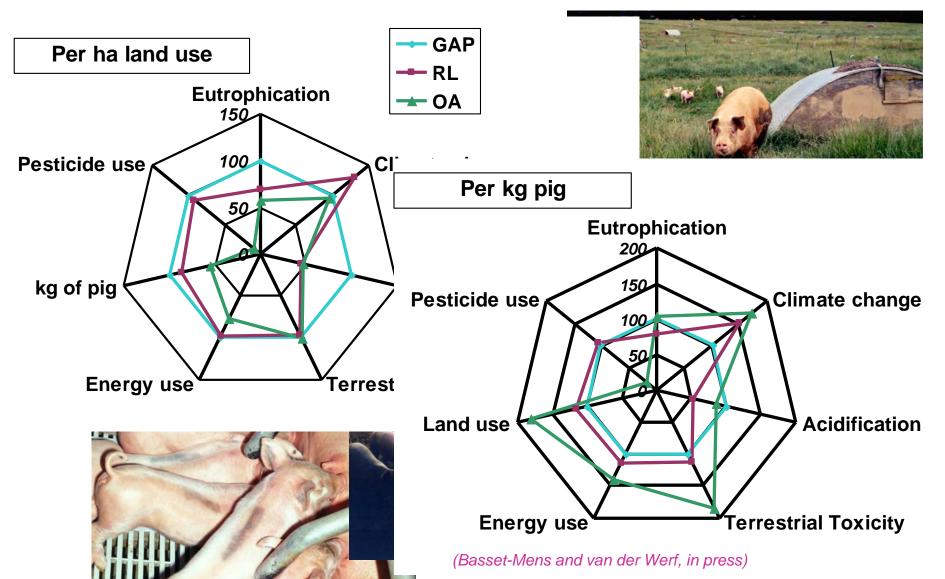
Farmgate P surplus by farm type and manure P supply

Variation in CF of milk between farms



CO₂-eq. per kg ECM

Kristensen et al, 2011



Variation in CF of milk explained by different management factors

Areabased indicators vs. Product oriented Comparison of pig production systems

An overall objective: Eco-functional intensification

Intensification of land use and agriculture by means of

- improved knowledge and application of biological principles and agro-ecological methods
- increased cooperation and synergy between different components of agro-eco systems and food systems,

with the aim of enhancing the health and productivity, adaptability and resilience of all its components.

Icrofs research and development strategy 2012: Primary themes

Growth

Credibility

Resilient systems

Focus area 4: Microbial interactions in soil, plants, animals, fodder and food

Little knowledge!

Decisive role!

Microbes, soil, plants, animals, fodder and food

BioConval – Conversion of manure to high value poultry feed in large scale egg production systems

Adult

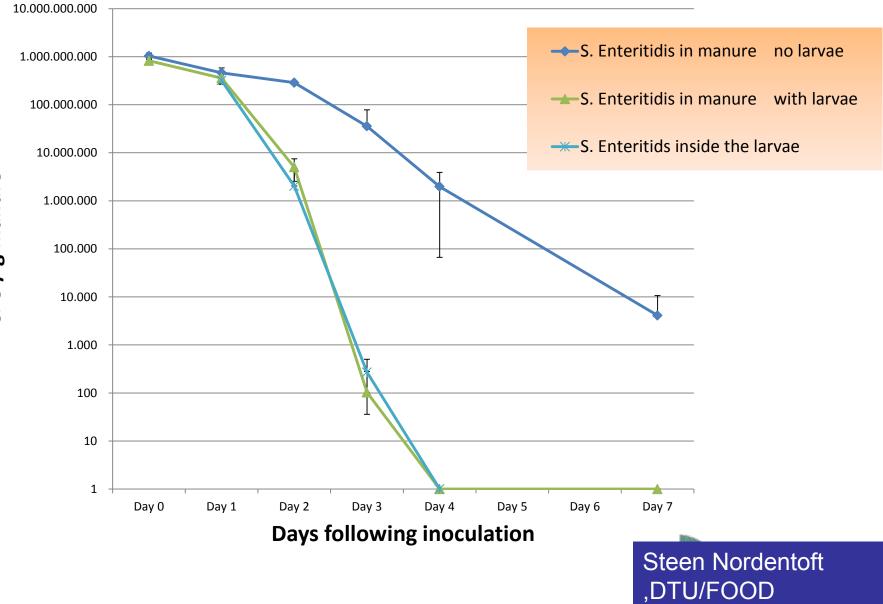
Larvae

Steen Nordentoft

Challenges in the organic egg production

- Composition of the feed
 - Balanced feed containing all

necessary nutrients and being organic


- Animal welfare
 - Cannibalism
 - Lower production, if undersupplied in essential nutrients
- Improved utilization of the manure
 - Conversion of nitrogen to high value protein
 - Improved value of the compost
 - Fresh insects are a part of organic hens diet
 - However, are larva grown on manure safe to use as fresh feed?

Steen Nordentoft ,DTU/FOOD

Degradation of Salmonella Enteritidis in poultry manure

CFU / g manure

Focus area 6: Animal and human health

Prevention

Health promoting qualities

ICROFS

FiBL

Introduction

Farm specific strategies to reduce environmental impact by improving health, welfare and nutrition of organic pigs

> **C. Leeb** Amsterdam, 15th May, 2013 2nd CORE Organic II research seminar

Three Systems

Helsinki Oslo storkholm Helsinki Dilinn Hinsk Hinsk Hinsk Dilinn Hinsk Hinsk Dilinn Hinsk Helsinki Dilinn Hinsk Hinsk Bellen Dilinn Bellen Dilinn Bellen Dilinn Bellen Dilinn Dilinn Hinsk Hinsk Dilinn Bellen Dilinn Dilinn Bellen Dilinn Dilinn Bellen Dilinn Dilinn Dilinn Bellen Dilinn Dilinn Dilinn Dilinn Bellen Dilinn Dilin

75 farms in 8 countries

To identify

animal - environment interactions in three systems

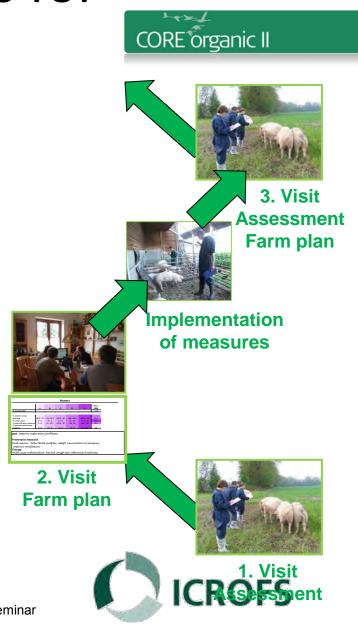
1421

CORE organic II

Hypothesis

- all systems are able to ensure good welfare and low environmental impact
- when well managed

Farm specific strategies for improvement


To develop and implement

· Farm specific strategies to:

- reduce environmental impacts
- by improving health, welfare, nutrition and management of organic pigs

 To disseminate knowledge to national advisory bodies and farmers

Sustainable intensification

A productive agriculture that conserves and enhances natural resources.

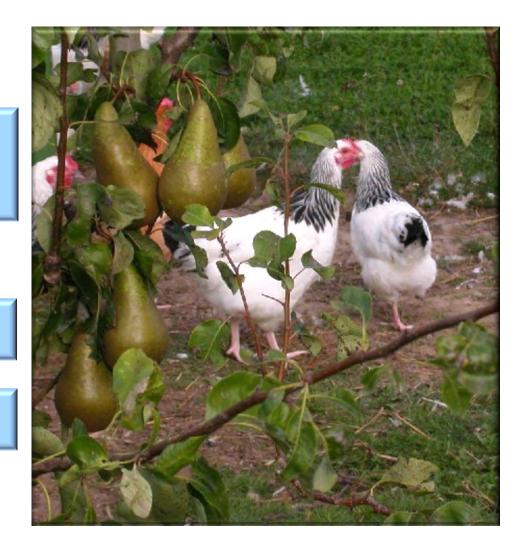
 uses an ecosystem approach that draws on nature's contribution to crop growth

 soil organic matter, water flow regulation, pollination and natural predation of pest

 and applies appropriate external inputs at the right time, in the right amount

CPI represents a major shift from the homogeneous model of crop production to knowledge-intensive, often location-specific, faming systems.

Is there a paradigm shift undergoing?



Focus Area 2: New organic production systems

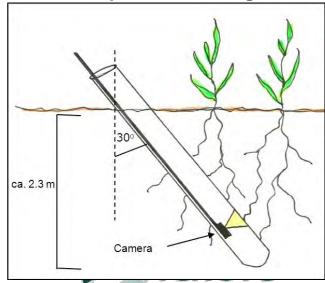
New integrated systems

Intensification

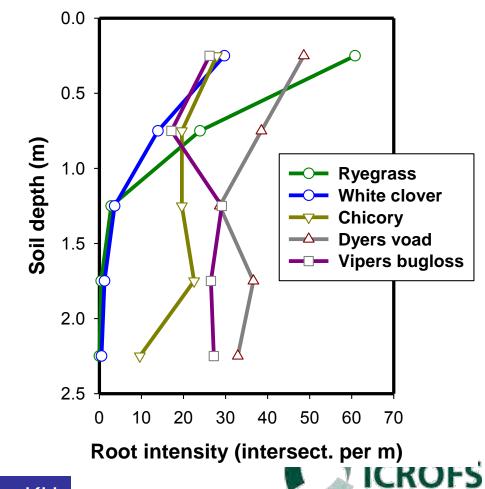
Integration

Field studies of root growth

Drilling equipment for insertionn of 3 m long minirhizotrons

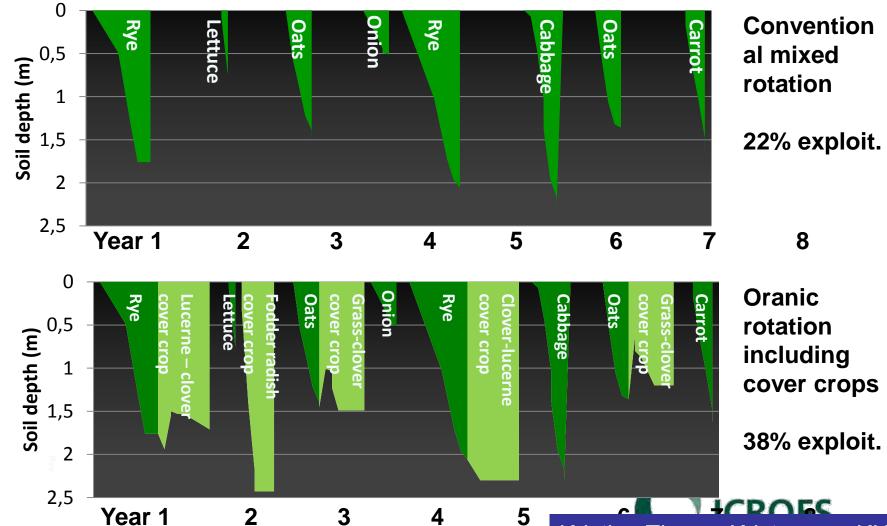

Insertion of a minirhizotron

Kristian Thorup-Kristensen, KU


Wheat plots in the field with 3 m long rhizotrons for root observation installed.

Camera inspection of root growth

Exploiting biodiversity:


- new species as cover crops

Kristian Thorup-Kristensen, KU

Root exploitation dynamics of rotation

Kristian Thorup-Kristensen, KU

FACCE – JPI Strategic Research Agenda

Core theme 2: Environmentally sustainable growth and intensification of agriculture

Core theme 3: Assessing and reducing trade-offs between food supply, biodiversity and ecosystem services

FACCE – JPI Strategic Research Agenda

www.faccejpi.com